角速度是单位时间内转过的弧度(角度),线速度是单位时间内走过的距离,二者都是矢量。
角速度:连接运动质点和圆心的半径在单位时间内转过的弧度叫做“角速度”。角速度的单位是弧度/秒,读作弧度每秒。它是描述物体转动或一质点绕另一质点转动的快慢和转动方向的物理量。物体运动角位移的时间变化率叫瞬时角速度(亦称即时角速度),单位是弧度•秒-1。
对于匀速圆周运动,角速度ω是一个恒量,可用运动物体与圆心联线所转过的角位移Δθ和所对应的时间Δt之比表示ω=△θ/△t。
线速度:质点(或物体上各点)作曲线运动(包括圆周运动)时所具有的即时速度。它的方向沿运动轨道的切线方向,故又称切向速度。它是描述作曲线运动的质点运动快慢和方向的物理量。物体上各点作曲线运动时所具有的即时速度,其方向沿运动轨道的切线方向。
在匀速圆周运动中,线速度的大小等于运动质点通过的弧长(S)和通过这段弧长所用的时间(△t)的比值。即v=S/△t,在匀速圆周运动中,线速度的大小虽不改变,但它的方向时刻在改变。它和角速度的关系是v=ωR。线速度的单位是米/秒。 "
扩展资料
一个以弧度为单位的圆(一个圆周为2π,即:360度=2π),在单位时间内所走的弧度即为角速度。公式为:ω=Ч/t(Ч为所走过弧度,t为时间)ω的单位为:弧度每秒 。
单位:在国际单位制中,单位是“弧度/秒”(rad/s)。(1rad = 360°/(2π) ≈ 57°17'45″)
转动周数时(例如:每分钟转动周数),则以转速来描述转动速度快慢。角速度的方向垂直于转动平面,可通过右手螺旋定则来确定。
符号:通常用希腊字母Ω(大写)或ω(小写)英文名称omega 国际音标注音/o'miga/。
瞬时角速度:物体运动角位移的时间变化率叫瞬时角速度(亦称即时角速度),单位是弧度/秒(rad/s),方向用右手螺旋定则决定。
匀速圆周运动中的角速度:对于匀速圆周运动,角速度ω是一个恒量,可用运动物体与圆心联线所转过的角位移Δθ和所对应的时间Δt之比表示ω=△θ/△t,还可以通过V(线速度)/R(半径)求出。
特性:伪矢量性:角速度是在物理学中描述物体转动时在单位时间内转过角度以及转动方向的矢量(更准确地说,是伪矢量)。
角速度的矢量性:v=ω×r,其中,×表示矢量相乘(叉乘),方向由右手螺旋定则确定,r为矢径,方向由圆心向外。
参考资料:百度百科角速度
2024-02-20 广告
线速度:质点(或物体上各点)作曲线运动(包括圆周运动)时所具有的即时速度。它的方向沿运动轨道的切线方向,故又称切向速度。它是描述作曲线运动的质点运动快慢和方向的物理量。物体上各点作曲线运动时所具有的即时速度,其方向沿运动轨道的切线方向。在匀速圆周运动中,线速度的大小等于运动质点通过的弧长(S)和通过这段弧长所用的时间(△t)的比值。即v=S/△t,在匀速圆周运动中,线速度的大小虽不改变,但它的方向时刻在改变。它和角速度的关系是v=ωR。线速度的单位是米/秒。 "
角速度:连接运动质点和圆心的半径在单位时间内转过的弧度叫做“角速度”。角速度的单位是弧度/秒,读作弧度每秒。它是描述物体转动或一质点绕另一质点转动的快慢和转动方向的物理量。物体运动角位移的时间变化率叫瞬时角速度(亦称即时角速度),单位是弧度•秒-1。
对于匀速圆周运动,角速度ω是一个恒量,可用运动物体与圆心联线所转过的角位移Δθ和所对应的时间Δt之比表示ω=△θ/△t。
线速度:质点(或物体上各点)作曲线运动(包括圆周运动)时所具有的即时速度。它的方向沿运动轨道的切线方向,故又称切向速度。它是描述作曲线运动的质点运动快慢和方向的物理量。物体上各点作曲线运动时所具有的即时速度,其方向沿运动轨道的切线方向。
在匀速圆周运动中,线速度的大小等于运动质点通过的弧长(S)和通过这段弧长所用的时间(△t)的比值。即v=S/△t,在匀速圆周运动中,线速度的大小虽不改变,但它的方向时刻在改变。它和角速度的关系是v=ωR。线速度的单位是米/秒。 "
扩展资料
一个以弧度为单位的圆(一个圆周为2π,即:360度=2π),在单位时间内所走的弧度即为角速度。公式为:ω=Ч/t(Ч为所走过弧度,t为时间)ω的单位为:弧度每秒 。
单位:在国际单位制中,单位是“弧度/秒”(rad/s)。(1rad = 360°/(2π) ≈ 57°17'45″)
转动周数时(例如:每分钟转动周数),则以转速来描述转动速度快慢。角速度的方向垂直于转动平面,可通过右手螺旋定则来确定。
符号:通常用希腊字母Ω(大写)或ω(小写)英文名称omega 国际音标注音/o'miga/。
瞬时角速度:物体运动角位移的时间变化率叫瞬时角速度(亦称即时角速度),单位是弧度/秒(rad/s),方向用右手螺旋定则决定。
匀速圆周运动中的角速度:对于匀速圆周运动,角速度ω是一个恒量,可用运动物体与圆心联线所转过的角位移Δθ和所对应的时间Δt之比表示ω=△θ/△t,还可以通过V(线速度)/R(半径)求出。
特性:伪矢量性:角速度是在物理学中描述物体转动时在单位时间内转过角度以及转动方向的矢量(更准确地说,是伪矢量)。
角速度的矢量性:v=ω×r,其中,×表示矢量相乘(叉乘),方向由右手螺旋定则确定,r为矢径,方向由圆心向外
角速度是单位时间内转过的角度