正弦定理和余弦定理的证明
2个回答
展开全部
正弦定理
证明
步骤1 在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA=b/sinB 同理,在△ABC中, b/sinB=c/sinC 步骤2. 证明a/sinA=b/sinB=c/sinC=2R: 如图,任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D. 连接DA. 因为在同圆或等圆中直径所对的圆周角是直角,所以∠DAB=90度 因为在同圆或等圆中同弧所对的圆周角相等,所以∠D等于∠C. 所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。
余弦定理
平面几何证法
在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC2=AD2+DC2 b2=(sinB*c)2+(a-cosB*c)2 b2=(sinB*c)2+a2-2ac*cosB+(cosB)2*c2 b2=(sinB2+cosB2)*c2-2ac*cosB+a2 b2=c2+a2-2ac*cosB cosB=(c2+a2-b2)/2ac
证明
步骤1 在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA=b/sinB 同理,在△ABC中, b/sinB=c/sinC 步骤2. 证明a/sinA=b/sinB=c/sinC=2R: 如图,任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D. 连接DA. 因为在同圆或等圆中直径所对的圆周角是直角,所以∠DAB=90度 因为在同圆或等圆中同弧所对的圆周角相等,所以∠D等于∠C. 所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。
余弦定理
平面几何证法
在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC2=AD2+DC2 b2=(sinB*c)2+(a-cosB*c)2 b2=(sinB*c)2+a2-2ac*cosB+(cosB)2*c2 b2=(sinB2+cosB2)*c2-2ac*cosB+a2 b2=c2+a2-2ac*cosB cosB=(c2+a2-b2)/2ac
系科仪器
2024-08-02 广告
2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。...
点击进入详情页
本回答由系科仪器提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询