洛必达法则证明是什么?

 我来答
妖感肉灵10
2022-08-02 · TA获得超过6.4万个赞
知道顶级答主
回答量:101万
采纳率:99%
帮助的人:2.4亿
展开全部

证明中,在x和一个接近a的值b之间利用柯西中值定理就是合理的,然后再让b和x同时趋向a。

两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。洛必达法则便是应用于这类极限计算的通用方法。

洛必达法则的特殊形式:

不能在数列形式下直接用洛必达法则,因为对于离散变量是无法求导数的。但此时有形式类近的斯托尔兹-切萨罗定理(Stolz-Cesàro theorem)作为替代。对于不符合上述分数形式的未定式,可以通过运算转为分数形式,再以本法则求其值。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式