如图,已知点C为线段AB上一点,△ACM与△CBN是等边三角形。求证:AN=BN、
4个回答
展开全部
证明:∵△ACM,△CBN是等边三角形
∴CM=CA CN=CB
∠MCA=∠NCB=60°
∴∠MCA+∠ACB=∠NCB+∠ACB
即∠MCB=∠ACN
在△BCM和△NCA中
{CB=CN
{∠BCM=∠NCA
{CM=CA
△BCM≌△NCA(SAS)
∴BM=NA
希望满意!
∴CM=CA CN=CB
∠MCA=∠NCB=60°
∴∠MCA+∠ACB=∠NCB+∠ACB
即∠MCB=∠ACN
在△BCM和△NCA中
{CB=CN
{∠BCM=∠NCA
{CM=CA
△BCM≌△NCA(SAS)
∴BM=NA
希望满意!
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:∵△ACM,△CBN是等边三角形,
∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,
在△CAN和△MCB中,
AC=MC,∠ACN=∠MCB,NC=BC,
∴△CAN≌△MCB(SAS),
∴AN=BM.
∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,
在△CAN和△MCB中,
AC=MC,∠ACN=∠MCB,NC=BC,
∴△CAN≌△MCB(SAS),
∴AN=BM.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
怎么不可能证出来,用全等,△ACN于△MCB
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询