有界函数与无穷大的乘积是什么?

 我来答
亦是如此
高粉答主

2021-12-24 · 往前看,不要回头。
亦是如此
采纳数:6378 获赞数:544566

向TA提问 私信TA
展开全部

无穷乘有界函数不可以确定结果,可能是无穷;可能是不存在。

当X-0时,(1/X)*sin(1/X)的极限就不存在。

1/X —〉趋向于无穷大,可是sin(1/X)是有界的。

对于:

x趋于无穷,limxsinx=∞问题。

从极限定义出发:

对于任意给定的不论多么大的正数M,不会存在一个正数X,使得当:

|x|>X时。

|xsinx|>M。 

相关信息:

集合论中对无穷有不同的定义。

德国数学家康托尔提出,对应于不同无穷集合的元素的个数(基数),有不同的“无穷”。两个无穷大量之和不一定是无穷大,有界量与无穷大量的乘积不一定是无穷大(如常数0就算是有界函数),有限个无穷大量之积一定是无穷大。

设函数f(x)在x0的某一去心邻域内有定义(或|x|大于某一正数时有定义)。如果对于任意给定的正数M(无论它多么大),总存在正数δ(或正数X)。

只要x适合不等式0<|x-x0|<δ(或|x|>X,即x趋于无穷),对应的函数值f(x)总满足不等式|f(x)|>M,则称函数f(x)为当x→x0(或x→∞)时的无穷大。

自变量的同一变化过程中,无穷大与无穷小具有倒数关系,即当x→a时f(x)为无穷大,则1/f(x)为无穷小;反之,f(x)为无穷小,且f(x)在a的某一去心邻域内恒不为0时,1/f(x)才为无穷大。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式