arcsinx的不定积分是什么?
展开全部
arcsinx的不定积分=xarcsinx+2√(1-x^2)+C。
具体回答如下:
∫arcsinxdx
=∫arcsinx(x)'dx
=xarcsinx-∫xd(arcsinx)
=xarcsinx-∫x/√(1-x^2)dx
=xarcsinx+∫(1-x^2)'/√(1-x^2)dx
=xarcsinx+∫1/√(1-x^2)d(1-x^2)
=xarcsinx+2√(1-x^2)+C
不定积分的公式:
1、∫adx=ax+C,a和C都是常数
2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-1
3、∫1/xdx=ln|x|+C
4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠1
5、∫e^xdx=e^x+C
6、∫cosxdx=sinx+C
7、∫sinxdx=-cosx+C
8、∫cotxdx=ln|sinx|+C=-ln|cscx|+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询