arcsinx的不定积分是什么?

 我来答
社无小事
高能答主

2022-01-23 · 游戏也是生活的态度。
社无小事
采纳数:2168 获赞数:20382

向TA提问 私信TA
展开全部

arcsinx的不定积分=xarcsinx+2√(1-x^2)+C。

具体回答如下:

∫arcsinxdx

=∫arcsinx(x)'dx

=xarcsinx-∫xd(arcsinx)

=xarcsinx-∫x/√(1-x^2)dx

=xarcsinx+∫(1-x^2)'/√(1-x^2)dx

=xarcsinx+∫1/√(1-x^2)d(1-x^2)

=xarcsinx+2√(1-x^2)+C

不定积分的公式:

1、∫adx=ax+C,a和C都是常数

2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-1

3、∫1/xdx=ln|x|+C

4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠1

5、∫e^xdx=e^x+C

6、∫cosxdx=sinx+C

7、∫sinxdx=-cosx+C

8、∫cotxdx=ln|sinx|+C=-ln|cscx|+C

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式