圆与圆的位置关系是什么?
圆与圆的位置关系外离、内切、外切、相交、内含。
判定方法有:无公共点,一圆在另一圆之外叫外离,在之内叫内含;有公共点的,一圆在另一圆之外叫外切,在之内叫内切,有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
圆和圆位置关系:
①无公共点,一圆在另一圆之外叫外离,在之内叫内含。
②有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。
③有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
圆的定义:
在同一平面内到定点的距离等于定长的点的集合叫做圆(circle)。这个定点叫做圆的圆心。
圆形一周的长度,就是圆的周长。能够重合的两个圆叫等圆。
圆不是一个正n边形(n为无限大的正整数),边长无限接近0但永远无法等于0的正n边形可以近似约等于圆,但并不是圆。
以上内容参考:百度百科—圆
圆与圆的位置关系是外离、外切、相交、内切、内含。
无公共点,一圆在另一圆之外叫外离,在之内叫内含。有公共点的,一圆在另一圆之外叫外切,在之内叫内切。有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
设两圆的半径分别为R和r,且R>r,圆心距为P,则结论:外离P>R+r;外切P=R+r;内含P<R-r,内切P=R-r;相交R-r<P<R+r。
判断圆与圆的位置关系方法:
设两个圆的半径为R和r,圆心距为d。
1、d>R+r两圆外离;两圆的圆心距离之和大于两圆的半径之和。
2、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。
3、d=R-r两圆内切;两圆的圆心距离之和等于两圆的半径之差。
4、d<R-r两圆内含;两圆的圆心距离之和小于两圆的半径之差。
5、d<R+r两园相交;两圆的圆心距离之和小于两圆的半径之和。