
微分方程y'+y=1的通解.
1个回答
展开全部
y'+y=1
dy/dx+y=1
dy/(1-y)=dx
-d(1-y)/(1-y)=dx
两边同时积分得
-ln(1-y)=x+lnC
ln[C(1-y)]=-x
e^(-x)=C(1-y)
y=1-1/(Ce^x)
所以
y=1-C/e^x
dy/dx+y=1
dy/(1-y)=dx
-d(1-y)/(1-y)=dx
两边同时积分得
-ln(1-y)=x+lnC
ln[C(1-y)]=-x
e^(-x)=C(1-y)
y=1-1/(Ce^x)
所以
y=1-C/e^x
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询