怎么证明当x大于1时,e的x次方大于ex

 我来答
北慕1718
2022-05-31 · TA获得超过861个赞
知道小有建树答主
回答量:135
采纳率:0%
帮助的人:51.2万
展开全部
方法一:x>1时,设f(t)=e^t,t∈[1,x]f(t)在[1,x]上连续,在(1,x)内可导,由拉格朗日中值定理,存在ξ∈(1,x),使得f'(ξ)=(e^x-e)/(x-1)f'(t)=e^t,所以(e^x-e)/(x-1)=e^ξξ>1,所以(e^x-e)/(x-1)>e,此即e^x>ex 方法二:设f(x)=e^x-ex,x∈[1,+∞)f(x)在[1,+∞)上连续,在(1,+∞)内可导,且f'(x)=e^x-e>0,所以f(x)在[1,+∞)上单调增加,所以x>1时,f(x)>f(1)=0,所以e^x>ex
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式