十字相乘法解一元二次方程
需注意:十字相乘法本质是一种简化方程的形式,它能把二次三项式分解因式,但是要务必注意各项系数的符号。
十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。十字相乘法的用处:用十字相乘法来分解因式。用十字相乘法来解一元二次方程。
十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。十字相乘法的缺陷:有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。十字相乘法只适用于二次三项式类型的题目。十字相乘法比较难学。
十字相乘法解一元二次方程要把二次项拆成两个因式的积,常数项拆成两个常数的积,然后十字图案交叉相乘,若合并后的结果为一次项,说明分解正确,再把每一行写在一个括号里相乘即可。若合并后的结果不是一次项,需要重新调整尝试。
十字交叉法因式分解:先将二次项系数拆成两个乘积的形式,再将常数项拆成两个乘积的形式,然后交叉乘积后等于一次项系数。
1、提取公因式法。
2、公式法(平方差公式和完全平方公式)。
例如:配方法和十字交叉法等。
(x+2y)(2x-11y)=2x2-7xy-22y2。
(x-3)(2x+1)=2x2-5x-3。
(2y-3)(-11y+1)=-22y2+35y-3。
这就是所谓的双十字相乘法。
十字相乘法的方法口诀:
十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
十字相乘法的用处:
(1)用十字相乘法来分解因式。
(2)用十字相乘法来解一元二次方程。
十字相乘法的优点:
用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
十字相乘法解一元二次方程要把二次项拆成两个因式的积,常数项拆成两个常数的积,然后十字图案交叉相乘,若合并后的结果为一次项,说明分解正确,再把每一行写在一个括号里相乘即可。若合并后的结果不是一次项,需要重新调整尝试。
十字交叉法因式分解:先将二次项系数拆成两个乘积的形式,再将常数项拆成两个乘积的形式,然后交叉乘积后等于一次项系数。
1、提取公因式法。
2、公式法(平方差公式和完全平方公式)。
例如:配方法和十字交叉法等。
(x+2y)(2x-11y)=2x2-7xy-22y2。
(x-3)(2x+1)=2x2-5x-3。
(2y-3)(-11y+1)=-22y2+35y-3。
这就是所谓的双十字相乘法。
十字相乘法的方法口诀:
十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
十字相乘法的用处:
(1)用十字相乘法来分解因式。
(2)用十字相乘法来解一元二次方程。
十字相乘法的优点:
用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。