一元三次方程
展开全部
一元三次方程快速解法有、因式分解法、一种换元法、卡尔丹公式法等多种方法。
1、因式分解法
因式分解法不是对所有的三次方程都适用,只对一些简单的三次方程适用.对于大多数的三次方程,只有先求出它的根,才能作因式分解。当然,对一些简单的三次方程能用因式分解求解的,当然用因式分解法求解很方便,直接把三次方程降次。
例如:解方程x^3-x=0。对左边作因式分解,得x(x+1)(x-1)=0,得方程的三个根:x1=0;x2=1;x3=-1。
2、一种换元法
对于一般形式的三次方程,先将方程化为x^3+px+q=0的特殊型。令x=z-p/3z,代入并化简,得:z^3-p/27z+q=0。再令z^3=w,代入,得:w^2-p/27w+q=0.这实际上是关于w的二次方程。解出w,再顺次解出z,x。
3、卡尔丹公式法
特殊型一元三次方程X^3+pX+q=0 (p、q∈R)。判别式Δ=(q/2)^2+(p/3)^3。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询