设数列an的前n项和为sn,对任意的正整数n,都有an=5sn+1成立,记bn=(4+an)/(1-an)(n是正整数)

(3)记Cn=b(2n)-b(2n-1),(n∈N+),设数列{cn}的前n项和为Tn,求证:对任意整数n,都有Tn<3/2... (3)记Cn=b(2n)-b(2n-1),(n∈N+),设数列{cn}的前n项和为Tn,求证:对任意整数n,都有Tn<3/2 展开
fnxnmn
2011-10-31 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:7991万
展开全部
因为an=5Sn+1
所以a(n-1)=5S(n-1)+1
所以an-a(n-1)=5Sn+1-[5S(n-1)+1]
所以an-a(n-1)=5[Sn-S(n-1)]=5an
所以an/a(n-1)=-1/4
即数列{an}是以公比为-1/4,首项为a1的等比数列
又因为a1=5S1+1=5a1+1
所以a1=-1/4
所以an=a1(-1/4)^(n-1)=(-1/4)^n

所以bn=(4+(-1/4)^n)/[1-(-1/4)^n]
=[4-4(-1/4)^n+5(-1/4)^n]/[1-(-1/4)^n]=4+[5(-1/4)^n]/[1-(-1/4)^n]
后面那一项上下同乘以(-4)^n, 即得bn=4+5/[(-4)^n-1]

cn=b(2n)-b(2n-1)=4+5/[(-4)^2n-1]-{4+5/[(-4)^(2n-1)-1]}
=5/(16^n-1)-5/[-4^(2n-1)-1]=5/(16^n-1)+5/[4^(2n-1)+1](后面这串上下同乘以4)
=5/(16^n-1)+20/[4^(2n)+4]=5/(16^n-1)+20/[16^n+4](通分化简可得下式)
=25*16^n/[(16^n-1)*(16^n+4)]
=25*16^n/[16^2n+3*16^n-4]
<25*16^n/16^2n=25/16^n

T1=c1=25*16/(15*20)=4/3<3/2 ……成立
当n>=2时,Tn<4/3+25/16²+25/16^3+……+25/16^n
=4/3+25{[1-(1/16)^(n-1)]*1/16²}/(1-1/16)
<4/3+25(1/16²)/(15/16)=69/48<3/2 ……成立

综上可知:对任意整数n,都有Tn<3/2。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式