求心形线r=a(1+cosθ)的全长,有图更好啦,心形线实在不大能理解,
1个回答
展开全部
这应该用定积分来求.
根据公式,心型线的长度设为L,那么
L=∫(r^2+r'^2)^(1/2)dθ 其中,r'表示r的导数,积分上限2π,下限为0
L=∫{[a(1+cosθ)]^2+(asinθ)^2}^(1/2)dθ
=a*∫[2+2cosθ)^(1/2)dθ
=2a*∫|cos(θ/2)|dθ=2a*[∫cos(θ/2)dθ (上限为π,下限为0)+∫-cos(θ/2)dθ(下限为π,上限为2π)]
=8a
根据公式,心型线的长度设为L,那么
L=∫(r^2+r'^2)^(1/2)dθ 其中,r'表示r的导数,积分上限2π,下限为0
L=∫{[a(1+cosθ)]^2+(asinθ)^2}^(1/2)dθ
=a*∫[2+2cosθ)^(1/2)dθ
=2a*∫|cos(θ/2)|dθ=2a*[∫cos(θ/2)dθ (上限为π,下限为0)+∫-cos(θ/2)dθ(下限为π,上限为2π)]
=8a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询