求xln(1+x^2)dx的积分 需要详细过程

 我来答
世纪网络17
2022-06-03 · TA获得超过5948个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:142万
展开全部
∫xln(1+x^2)dx
=(1/2)∫ln(1+x^2)d(x^2) 设x^2=u
=(1/2)∫ln(1+u)du
=(1/2)[uln(1+u)-∫u/(1+u)du]
=(1/2)[uln(1+u)-∫1-1/(1+u)du]
=(1/2)[uln(1+u)-u-ln(1+u)]+C 转换回去
=(1/2)[x^2ln(1+x^2)-x^2+ln(1+x^2)]+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式