解析几何产生的时代背景是什么?
古希腊数学家梅内克缪斯(Menaechmus)的解题、证明方式与现在使用坐标系十分相似,以至于有时会认为他是解析几何的鼻祖。阿波罗尼奥斯在《论切触》中解题方式在现在被称之为单维解析几何;他使用直线来求得一点与其它点之间的比例。
阿波罗尼奥斯在《圆锥曲线论》中进一步发展了这种方式,这种方式与解析几何十分相似,比起笛卡儿早了1800多年。他使用了参照线、直径、切线与现进所使用坐标系没有本质区别,即从切点沿直径所量的距离为横坐标,而与切线平行、并与数轴和曲线向交的线段为纵坐标。他进一步发展了横坐标与纵坐标之间的关系,即两者等同于夸张的曲线。
阿波罗尼奥斯的工作接近于解析几何,但它没能完成它,因为他没有将负数纳入系统当中。在此,方程是由曲线来确定的,而曲线不是由方程得出的。坐标、变量、方程不过是一些给定几何题的脚注罢了。
扩展资料
从传统意义上讲,解析几何是由勒内·笛卡儿(René Descartes)创立的。笛卡儿的创举被记录在《几何学》当中,在1637年与他的《方法论》一道发表。这些努力是以法语写成的,其中的哲学思想为创立无穷小提供了基础。最初,这些著作并没有得到认可,部分原因是由于其中论述的间断,方程的复杂所致。直到1649年,著作被翻译为拉丁语,并被冯·斯霍滕(van Schooten)恭维后,才被大众所认可接受。
费马也为解析几何的发展做出了贡献。他的《平面与立体轨迹引论》(Ad Locos Planos et Solidos Isagoge)虽然没有在生前发表,但手稿于1637年在巴黎出现,正好早于笛卡儿《方法论》一点。《引论》文字清晰,获得好评,为解析几何提供了铺垫。
费马与笛卡儿方法的不同在于出发点。费马从代数公式开始,然后描述它的几何曲线,而笛卡儿从几何曲线开始,以方程的完结告终。结果,笛卡儿的方法可以处理更复杂的方程,并发展到使用高次多项式来解决问题。
参考资料来源:百度百科-坐标几何(解析几何)
随着工业革命的开展,机器大生产取代手工劳动。对机器的需求量大增,机器的生产制造需要把几何形体与数学结合起来,实现几何的精确运算,从而产生出精密的机器设备,由此解析几何应运而生。
解析几早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。
扩展资料
17世纪以来,由于航海、天文、力学、经济、军事、生产的发展,以及初等几何和初等代数的迅速发展,促进了坐标几何的建立,并被广泛应用于数学的各个分支。在坐标几何创立以前,几何与代数是彼此独立的两个分支。
坐标几何的建立第一次真正实现了几何方法与代数方法的结合,使形与数统一起来,这是数学发展史上的一次重大突破。作为变量数学发展的第一个决定性步骤,坐标几何的建立对于微积分的诞生有着不可估量的作用。
解析几何的实际背景更多的是来自对变量数学的需求.文艺复兴后的欧洲进入了一个生产迅速发展,思想普遍活跃的时代.机械的广泛使用,促使人们对机械性能进行研究,这需要运动学知识和相应的数学理论;建筑的兴盛 、河道和堤坝的修建又提出了有关固体力学和流体力学的问题,这些问题的合理解决需要正确的数学计算;航海事业的发展向天文学,实际上也是向数学提出了如何精确测定经纬度、计算各种不同形状船体的面积、体积以及确定重心的方法,望远镜与显微镜的发明,提出了研究凹凸透镜的曲面形状问题.在数学上就需要研究求曲线的切线问题.所有这些都难以仅用初等几何或仅用初等代数在常量数学的范围内解决,于是,人们就试图创设变量数学.作为代数与几何相结合的产物――解析几何,也就在这种背景下问世了.
广告 您可能关注的内容 |