【三角函数差角公式】推导过程及证明方法
我们在学习三角函数的时候,有很多相关公式需要记忆。下面我整理了三角函数差角公式,供大家参考!
三角函数差角公式有哪些
sin(A-B)=sinAcosB-sinBcosA
cos(A-B)=cosAcosB+sinAsinB
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
三角函数和角公式有哪些
sin(A+B)=sinAcosB+cosAsinB
cos(A+B)=cosAcosB-sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
三角函数差角公式推导过程及证明方法
首先,我们知道sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sinacosb
同理,若把两式相减,就得到cosasinb=[sin(a+b)-sin(a-b)]/2
同样的,我们还知道cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosacosb
同理,两式相减我们就得到sinasinb=-[cos(a+b)-cos(a-b)]/2
这样,我们就得到了积化和差的公式:
cosasinb=[sin(a+b)-sin(a-b)]/2
sinasinb=-[cos(a+b)-cos(a-b)]/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin[(x+y)/2]cos[(x-y)/2]
sinx-siny=2cos[(x+y)/2]sin[(x-y)/2]
cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2]cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2]