【三角函数差角公式】推导过程及证明方法

 我来答
天罗网17
2022-07-07 · TA获得超过6177个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:72.3万
展开全部

我们在学习三角函数的时候,有很多相关公式需要记忆。下面我整理了三角函数差角公式,供大家参考!

三角函数差角公式有哪些

sin(A-B)=sinAcosB-sinBcosA

cos(A-B)=cosAcosB+sinAsinB

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

三角函数和角公式有哪些

sin(A+B)=sinAcosB+cosAsinB

cos(A+B)=cosAcosB-sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

三角函数差角公式推导过程及证明方法

首先,我们知道sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sinacosb

同理,若把两式相减,就得到cosasinb=[sin(a+b)-sin(a-b)]/2

同样的,我们还知道cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb

所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosacosb

同理,两式相减我们就得到sinasinb=-[cos(a+b)-cos(a-b)]/2

这样,我们就得到了积化和差的公式:

cosasinb=[sin(a+b)-sin(a-b)]/2

sinasinb=-[cos(a+b)-cos(a-b)]/2

好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式

我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

把a,b分别用x,y表示就可以得到和差化积的四个公式:

sinx+siny=2sin[(x+y)/2]cos[(x-y)/2]

sinx-siny=2cos[(x+y)/2]sin[(x-y)/2]

cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2]cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2]

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式