相关系数公式是什么?

 我来答
社无小事
高能答主

2021-12-22 · 认真答题,希望能帮到你
社无小事
采纳数:2168 获赞数:20437

向TA提问 私信TA
展开全部

相关系数r的计算公式是ρXY=Cov(X,Y)/√[D(X)]√[D(Y)]。

公式描述:公式中Cov(X,Y)为X,Y的协方差,D(X)、D(Y)分别为X、Y的方差。

若Y=a+bX,则有:

令E(X) =μ,D(X) =σ。

则E(Y) = bμ+a,D(Y) = bσ。

E(XY) = E(aX + bX) = aμ+b(σ+μ)。

Cov(X,Y) = E(XY)−E(X)E(Y) = bσ。

变量间的这种相互关系,称为具有不确定性的相关关系。

⑴完全相关:两个变量之间的关系,一个变量的数量变化由另一个变量的数量变化所惟一确定,即函数关系。

⑵不完全相关:两个变量之间的关系介于不相关和完全相关之间。

⑶不相关:如果两个变量彼此的数量变化互相独立,没有关系。

图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
帐号已注销
2023-07-16 · TA获得超过4274个赞
知道大有可为答主
回答量:5007
采纳率:100%
帮助的人:72.6万
展开全部

相关系数公式是ρXY=Cov(X,Y)/√[D(X)]√[D(Y)]。公式中Cov(X,Y)为X,Y的协方差,D(X)、D(Y)分别为X、Y的方差。

公式。

若Y=a+bX,则有:

令E(X) =μ,D(X) =σ。

则E(Y) = bμ+a,D(Y) = bσ。

E(XY) = E(aX + bX) = aμ+b(σ+μ)。

Cov(X,Y) = E(XY)−E(X)E(Y) = bσ。

相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量。

相关系数按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度,着重研究线性的单相关系数。当相关系数较大时,通常说X和Y相关程度较好;当相关系数较小时,通常说X和Y相关程度较差。

需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1。

当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
无锡启塬博d5
2023-07-24
知道答主
回答量:15
采纳率:0%
帮助的人:2757
展开全部
相关系数公式是一种统计量,用来衡量两个变量之间的线性关系强度和方向。常用的相关系数公式有皮尔逊相关系数公式和斯皮尔曼相关系数公式。
皮尔逊相关系数(Pearson correlation coefficient)公式:
r = Cov(X,Y) / (σX * σY)
其中,r表示皮尔逊相关系数,Cov(X,Y)表示X和Y的协方差,σX和σY分别表示X和Y的标准差。
斯皮尔曼相关系数(Spearman correlation coefficient)公式:
ρ = 1 - (6 * Σd^2) / (n * (n^2 - 1))
其中,ρ表示斯皮尔曼相关系数,d表示X和Y的等级差,n表示样本容量。
这两个相关系数公式都是用来衡量两个变量之间的关系强度,取值范围在-1到1之间。当相关系数为1时,表示两个变量完全正相关,当相关系数为-1时,表示两个变量完全负相关,当相关系数为0时,表示两个变量之间没有线性关系。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
缕尔多
2023-07-15 · 超过25用户采纳过TA的回答
知道答主
回答量:1095
采纳率:22%
帮助的人:21.2万
展开全部
相关系数是一用于衡量两个变量之间线性相关程统计常用的相关系数公式是尔相关系数(Pearson correlation coefficient)。
皮尔逊相关系数公式如下:
r = Σ((x - ȳ)( ȳ)) / sqrt(Σ(x - ȳ)² * Σ(y - ȳ²)
其中,r表示皮尔逊系数和别表示两个变量的取,表示的平均值。
皮尔逊相关数值范围为-到1,体解释下:
- 当r等于时,表示完全正相关,即两个变量呈完全线性关系,随一个变量的加,另一个变量也会增加。
- 当r等于-1时,完全负相关,即两个变量呈完全线性关系,随着一个变量的增,另一个变量会减。
- 当r等于0时,表示线性相关即两个变量之间不存在线性关。
- 当r介于-1和1之间时,表示存在一定程度的线性相关,r的值越接近1,相关程度越。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
悬疑片影视大全
2023-07-16
知道答主
回答量:14
采纳率:0%
帮助的人:2323
展开全部
相关系数是用来衡量两个变量之间线性关系强度的统计量。常用的相关系数公式有皮尔逊相关系数和斯皮尔曼相关系数。
1. 皮尔逊相关系数(Pearson correlation coefficient):
皮尔逊相关系数衡量的是两个变量之间的线性关系强度,取值范围为-1到1。公式如下:
r = (Σ((X - X̄)(Y - Ȳ))) / (n * σX * σY)
其中,r为皮尔逊相关系数,X和Y分别为两个变量的取值,X̄和Ȳ分别为两个变量的均值,σX和σY分别为两个变量的标准差,n为样本容量。
2. 斯皮尔曼相关系数(Spearman correlation coefficient):
斯皮尔曼相关系数衡量的是两个变量之间的单调关系强度,不要求变量之间是线性关系。公式如下:
ρ = 1 - (6 * Σd^2) / (n * (n^2 - 1))
其中,ρ为斯皮尔曼相关系数,d为两个变量的秩次差,n为样本容量。
需要注意的是,相关系数只能衡量两个变量之间的关系强度,不能确定因果关系。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式