如图所示,在Rt△ABC中,∠ACB=90度,CD⊥AB于D,设AC=b,BC=a,AB=c,CD=h
展开全部
①S△ABC=1/2ab=1/2ch
∴ab=ch
∴a²b²=c²h²
由Rt△ABC得 a²+b²=c²
∴a²b²=(a²+b²)h²
同除以ab²h²得 a²/1+b²/1=h²/1
② (a+b)²=a²+2ab+b²
∵a²+b²=c² ab=ch
所以 (a+b)²=a²+2ab+b²=c²+2ch
又∵(c+h)²=c²+2ch+h²
∴(a+b)²+h²=(c+h)²
所以 以a+b,h,c+h三边组成的三角形是直角三角形
∴ab=ch
∴a²b²=c²h²
由Rt△ABC得 a²+b²=c²
∴a²b²=(a²+b²)h²
同除以ab²h²得 a²/1+b²/1=h²/1
② (a+b)²=a²+2ab+b²
∵a²+b²=c² ab=ch
所以 (a+b)²=a²+2ab+b²=c²+2ch
又∵(c+h)²=c²+2ch+h²
∴(a+b)²+h²=(c+h)²
所以 以a+b,h,c+h三边组成的三角形是直角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询