在△ABC中,角A、B、C所对的边分别为a、b、c,已知cos2C=-1/4.当a=2,2sinA=sinC时,求b及c的长
3个回答
展开全部
cos2C=2cos²C-1=-1/4 推出cos²C=3/8 cosC=√(3/8)或者-√(3/8)
正弦定理得 a/sinA=c/sinC 其中sinC=2sinA
所以 a/sinA=c/2sinA 即可得出 c=2a=4
余弦定理得 c²=a²+b²-2abcosC
代入数据可得 16=4+b²-4b√(3/8)或者16=4+b²+4b√(3/8)
化简可得 16=4+b²-b√6 或者16=4+b²+b√6 (√6就是从这步得来的)
方程变形可得 b²-b√6-12=0 或者 b²+b√6-12=0
求根公式可得 b={√6+-√[6+48]}/2 或者 b={-√6+-√[6+48]}/2
化简得 b={√6+-√[6+48]}/2={√6+-√54}/2={√6+-3√6}/2= 2√6 或者 -√6
或者 b={-√6+-√[6+48]}/2={-√6+-√54}/2={-√6+-3√6}/2= √6 或者 -2√6
解方程得 b=2√6 或者 b=√6(负值舍去)
再给你细说一下 4√(3/8)=√[4²*(3/8)]=√[16*(3/8)]=√6
还不明白的话,欢迎HI我啊……
希望能帮到你啊……
正弦定理得 a/sinA=c/sinC 其中sinC=2sinA
所以 a/sinA=c/2sinA 即可得出 c=2a=4
余弦定理得 c²=a²+b²-2abcosC
代入数据可得 16=4+b²-4b√(3/8)或者16=4+b²+4b√(3/8)
化简可得 16=4+b²-b√6 或者16=4+b²+b√6 (√6就是从这步得来的)
方程变形可得 b²-b√6-12=0 或者 b²+b√6-12=0
求根公式可得 b={√6+-√[6+48]}/2 或者 b={-√6+-√[6+48]}/2
化简得 b={√6+-√[6+48]}/2={√6+-√54}/2={√6+-3√6}/2= 2√6 或者 -√6
或者 b={-√6+-√[6+48]}/2={-√6+-√54}/2={-√6+-3√6}/2= √6 或者 -2√6
解方程得 b=2√6 或者 b=√6(负值舍去)
再给你细说一下 4√(3/8)=√[4²*(3/8)]=√[16*(3/8)]=√6
还不明白的话,欢迎HI我啊……
希望能帮到你啊……
展开全部
解:当a=2,2sinA=sinC时,
由正弦定理 asinA= csinC,得:c=4
由cos2C=2cos2C-1= -14,及0<C<π 得
cosC=± 64
由余弦定理 c2=a2+b2-2abcosC,得
b2± 6b-12=0
解得b= 6或2 √6
所以b= √6或b=2√6
由正弦定理 asinA= csinC,得:c=4
由cos2C=2cos2C-1= -14,及0<C<π 得
cosC=± 64
由余弦定理 c2=a2+b2-2abcosC,得
b2± 6b-12=0
解得b= 6或2 √6
所以b= √6或b=2√6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
b=2√6 或者 b=√6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询