已知,如图,在三角形ABC中,AB=AC,∠A=100°,BD是∠ABC的平分线,求证:AD+BD=BC

数学新绿洲
推荐于2016-12-01 · 初中高中数学解题研习
数学新绿洲
采纳数:13056 获赞数:76574

向TA提问 私信TA
展开全部
证明:在线段BC上取点E、F,分别使得BE=AB,BF=BD
则在等腰三角形中,∠ABC=100°,∠ABC=∠ACB=40°
又∠ABC的平分线是BD,则∠ABD=∠DBC=20°
因为BD是公共边,且BE=AB
所以△ABD≌△EBD (SAS)
则AD=DE (1)
且∠BED=∠BAD=100°
所以∠DEF=180°-∠BED=80°
在△BDF中,BD=BF,∠DBF=20°
则∠BDF=∠BFD=80°
所以∠BFD=∠DEF
则DF=DE (2)
又在△DFC中,外角∠BFD=80°=∠BCD+∠CDF,且∠BCD=40°
则∠BCD=∠CDF=40°
可得DF=FC (3)
所以由(1)(2)(3)式可知FC=AD
又BF=BD
所以BD+AD=BF+FC=BC
命题得证
dream不变9
2013-12-01 · TA获得超过152个赞
知道答主
回答量:38
采纳率:0%
帮助的人:31.9万
展开全部
证明: (方法一)过D作∠CDE=∠BCA,交BC于E。所以ΔCED为等腰三角形,即得:CE=DE。
因为∠A=100°,所以∠ECD=∠EDC=40°,故∠BED=80°,
故A,C,E,D四点共圆。
而∠ABD=∠EBD=20°,故AD=DE,∠BDE=80°.
所以ΔBDE为等腰三角形,即有BD=CE.
从而AD=DE=CE。
因此 BD+AD=BE+DE=BE+CE=BC。证毕。

证明:(方法二)在BC上截取BE=AB ,容易证明△ABD≌△EBD
==>∠DEB=∠A=100,∠BDE=∠BDA=60,AD=DE
在CE线段上取点F,使DF=DE
==>∠DFE=∠DEF=80° ,==>∠EDF=20°
==>∠FDB=80°=∠DFB==> BD=BF
∠CDF=180-∠FDB-∠BDA=180°-80°-60°=40°=∠C=40°
==>∠C=∠CDF==> CF=DF=DE=AD
==>BC=CF+BF=BD+AD.

记得看一下角能不能对的上~~~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
手机用户b707d
2011-11-06 · TA获得超过5.9万个赞
知道小有建树答主
回答量:2.4万
采纳率:0%
帮助的人:3299万
展开全部
楼上正解

参考资料: 老师讲的

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式