偏导数存在的条件是什么?
展开全部
条件:
偏导数存在的条件是:若函数在某点可微分,则函数在该点必连续;若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。
偏导数存在与否可以从一元函数的角度考虑,因为把多元函数中的其他变量都固定后,就可以看成是一元函数了,所以一元函数的导数存在条件可以平行的搬到多元函数的偏导数存在条件上来。
X方向的偏导数:
设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果△z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数,实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询