求二元函数的驻点不是极值点

 我来答
印映菡009
2022-06-30 · TA获得超过336个赞
知道答主
回答量:149
采纳率:46%
帮助的人:34.3万
展开全部
二元函数的极值的几何意义是:如果函数f的图形在极大值点或极小值点有一个切平面,则切平面必为水平。
条件极值的几何意义要结合函数f和限定条件才好确定,我手上现在的一本教材上面给了这样一个例子,z=x^2+2y^2在限制条件x^2+y^2=1下的极值,前者是抛物面,后者是在xy平面的一个圆,想象一个过圆的圆柱与抛物面相交得出一条曲线,此曲线的最高点和最低点即为条件极值点
关于二元函数的驻点不是极值点一个例子是双曲抛物面的鞍点,函数为z=y^2-x^2,呈马鞍状,沿着x轴方向(y=0),(0,0)点为极大值点,沿着y轴方向恰好相反为极小值点。
用上面这个函数在限定条件x^2+y^2=1下,可以求得条件极值。
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式