傅里叶级数如何理解?
1个回答
展开全部
傅里叶级数,就是将一个复杂函数展开成三角级数。
法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。
性质
1、收敛性
傅里叶级数的收敛性:满足狄利赫里条件的周期函数表示成的傅里叶级数都收敛。狄利赫里条件如下:
在任何周期内,x(t)须绝对可积;在任一有限区间中,x(t)只能取有限个最大值或最小值;
在任何有限区间上,x(t)只能有有限个第一类间断点。
2、正交性
所谓的两个不同向量正交是指它们的内积为0,这也就意味着这两个向量之间没有任何相关性。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询