斐波那契数列通项公式是什么?
1个回答
展开全部
如图:
斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:
F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从 1963 年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
斐波那契数列特性之平方与前后项:
从第二项开始(构成一个新数列,第一项为1,第二项为2,……),每个偶数项的平方都比前后两项之积多1,每个奇数项的平方都比前后两项之积少1。
如:第二项 1 的平方比它的前一项 1 和它的后一项 2 的积 2 少 1,第三项 2 的平方比它的前一项 1 和它的后一项 3 的积 3 多 1。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询