求极限:lim(x→+∞)(2/π arctanx)x
解法一:原式=e^{lim(x->+∞)[x(ln(arctanx)+ln(2/π))]} (应用初等函数的连续性和对数性质)
=e^{lim(x->+∞)[(ln(arctanx)+ln(2/π))/(1/x)]}
=e^{lim(x->+∞)[((1/arctanx)(1/(1+x²)))/(-1/x²)]} (0/0型极限,应用罗比达法则)
=e^{lim(x->+∞)[(1/arctanx)(-1/(1+1/x²))]}
=e^[(1/(π/2))(-1/(1+0))]
=e^(-2/π);
解法二:原式=lim(x->+∞){[(1+(2arctanx-π)/π)^(π/(2arctanx-π))]^[x(2arctanx-π)/π]}
={lim(x->+∞)[(1+(2arctanx-π)/π)^(π/(2arctanx-π))]}^{lim(x->+∞)[x(2arctanx-π)/π]}
=e^{lim(x->+∞)[x(2arctanx-π)/π]} (应用重要极限lim(z->0)[(1+z)^(1/z)]=e)
=e^{lim(x->+∞)[(2arctanx-π)/(π/x)]}
=e^{lim(x->+∞)[(2/(1+x²))/(-π/x²)]} (0/0型极限,应用罗比达法则)
=e^{lim(x->+∞)[(-2/π)(1/(1+1/x²))]}
=e^[(-2/π)(1/(1+0))]
=e^(-2/π)。
扩展资料
求极限基本方法有:
1.直接代入法
对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。
直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。
2.无穷大与无穷小的转换法
在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。
(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。
(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。
3.除以适当无穷大法
对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。
解法一:原式=e^{lim(x->+∞)[x(ln(arctanx)+ln(2/π))]} (应用初等函数的连续性和对数性质)
=e^{lim(x->+∞)[(ln(arctanx)+ln(2/π))/(1/x)]}
=e^{lim(x->+∞)[((1/arctanx)(1/(1+x²)))/(-1/x²)]} (0/0型极限,应用罗比达法则)
=e^{lim(x->+∞)[(1/arctanx)(-1/(1+1/x²))]}
=e^[(1/(π/2))(-1/(1+0))]
=e^(-2/π);
解法二:原式=lim(x->+∞){[(1+(2arctanx-π)/π)^(π/(2arctanx-π))]^[x(2arctanx-π)/π]}
={lim(x->+∞)[(1+(2arctanx-π)/π)^(π/(2arctanx-π))]}^{lim(x->+∞)[x(2arctanx-π)/π]}
=e^{lim(x->+∞)[x(2arctanx-π)/π]} (应用重要极限lim(z->0)[(1+z)^(1/z)]=e)
=e^{lim(x->+∞)[(2arctanx-π)/(π/x)]}
=e^{lim(x->+∞)[(2/(1+x²))/(-π/x²)]} (0/0型极限,应用罗比达法则)
=e^{lim(x->+∞)[(-2/π)(1/(1+1/x²))]}
=e^[(-2/π)(1/(1+0))]
=e^(-2/π)。
解:原式=2/[π(π/2)]=4/π²
②求极限:x→+∞lim[(2arctanx)/π ]
原式=2(π/2)/π=1
③求极限:x→+∞lim[2/(π arctanx)]x
原式=+∞
请根据原题对号入座!
【不清楚的话,去搜索一下arctanx的函数图象】
那么lim(x→+∞)(2/π arctanx)x
=lim(2/π·π/2) x
=x
=+∞