高中数学向量公式有哪些 高中数学向量公式介绍
展开全部
1、定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
2、定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。向量的数量积的坐标表示:a•b=x•x+y•y。向量的数量积的运算律a•b=b•a(交换律);
3、(λa)•b=λ(a•b)(关于数乘法的结合律);(a+b)•c=a•c+b•c(分配律);向量的数量积的性质a•a=|a|的平方。a⊥b〈=〉a•b=0。|a•b|≤|a|•|b|。
4、向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。2、向量的数量积不满足消去律,即:由a•b=a•c(a≠0),推不出b=c。
2、定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。向量的数量积的坐标表示:a•b=x•x+y•y。向量的数量积的运算律a•b=b•a(交换律);
3、(λa)•b=λ(a•b)(关于数乘法的结合律);(a+b)•c=a•c+b•c(分配律);向量的数量积的性质a•a=|a|的平方。a⊥b〈=〉a•b=0。|a•b|≤|a|•|b|。
4、向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。2、向量的数量积不满足消去律,即:由a•b=a•c(a≠0),推不出b=c。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询