变限积分被积函数有间断点时可导吗

 我来答
琳大小姐346
2020-12-26 · TA获得超过454个赞
知道答主
回答量:234
采纳率:97%
帮助的人:51.1万
展开全部

有限个第一类间断点就可积。如果间断点为可去间断点则积分函数可导。如果为跳跃间断点则积分函数不可导。

首先判断函数在这个点x0是否有定义,即f(x0)是否存在;其次判断f(x0)是否连续,即f(x0-), f(x0+), f(x0)三者是否相等;再次判断函数在x0的左右导数是否存在且相等,即f‘(x0-)=f'(x0+),只有以上都满足了,则函数在x0处才可导。

可导的函数一定连续;不连续的函数一定不可导。

可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。

如果一个函数在x0处可导,那么它一定在x0处是连续函数


扩展资料:

导数的几何意义:

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。

参考资料:百度百科-导数

参考资料:百度百科-可导

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
中智咨询
2024-08-28 广告
F(x)=(1/2)*∫(0,x) (x^2-2xt+t^2)*g(t)dt =(1/2)*[x^2*∫(0,x) g(t)dt-2x*∫(0,x) tg(t)dt+∫(0,x)t^2*g(t)dt] F'(x)=(1/2)*[2x*∫(0... 点击进入详情页
本回答由中智咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式