在直角三角形中,c满足什么条件,又如何得出?
1个回答
展开全部
c(斜边)=√(a²+b²)。(a,b为两直角边)
解答过程如下:
(1)在直角三角形中满足勾股定理—在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。数学表达式:a²+b²=c²
(2)a²+b²=c²求c,因为c是一条边,所以就是求大于0的一个根。即c=√(a²+b²)。
扩展资料:
直角三角形的一些性质:
(1)直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
(2)在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
直角三角形的判定方法
(1)有一个角为90°的三角形是直角三角形。
(2)若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
(3)两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
参考资料:百度百科-勾股定理
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询