怎么理解极限的定义式?

 我来答
baochuankui888
高粉答主

2023-01-14 · 醉心答题,欢迎关注
知道答主
回答量:60
采纳率:100%
帮助的人:9638
展开全部

极限属于微积分的基础概念,解法如下:

解析:

x/(x+sinx)=1/(1+sinx/x)

∵ -1≤sinx≤1

∴ sinx有界

又∵ x->+∞时,lim(1/x)=0

∴ lim[(sinx)(1/x)]=0

∴ lim[x/(x+sinx)]=1/(1+0)=1

扩展资料:

性质

1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。

2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。

但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)n+1”

3、与子列的关系:数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列

收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。

单调收敛定理

单调有界数列必收敛

函数极限

设函数  在点  的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数  (无论它多么小),总存在正数 ,使得当x满足不等式  时,对应的函数值  

都满足不等式:|f(x)-A|<ε,则称函数f当x趋于+∞时以A为极限,记作lim f(x) = A 或 f(x)->A(x->+∞)

参考资料:百度百科——lim

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式