设函数f(x)=ax-(a+1)lnx,其中a≥ -1 ,求f(x)的单调区间.

 我来答
户如乐9318
2022-08-08 · TA获得超过6656个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:139万
展开全部
首先x>0
f'(x)=a-(a+1)/x
令f'(x)=0得x=(a+1)/a 由x>0 a>=-1知
a>0时 能取到x=(a+1)/a满足f'(x)=0
当00,故在此区间函数递增
-1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式