微积分 证明极限 证明极限 用ε-δ 定义 lim(x →a) x^2=a^2

 我来答
科创17
2022-08-06 · TA获得超过5915个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:176万
展开全部
证明如下:
由于|f(x)-A|=|x^2-a^2|=|(x-a)|*|(x+a)|<=|x-a|.
为了使|f(x)-A|<ε,只需要取δ =ε,当0<|x-a|<δ时,就有|x^2-a^2|<ε,则有:
lim(x →a) x^2=a^2.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式