不定积分e^x*sinx

 我来答
颜代7W
高粉答主

2022-11-07 · 每个回答都超有意思的
知道小有建树答主
回答量:505
采纳率:100%
帮助的人:12.8万
展开全部

e^x*sinx的不定积分为e^x*(sinx-cosx)/2+C。

解:∫e^x*sinxdx

=∫sinxd(e^x)

=e^x*sinx-∫e^xd(sinx)

=e^x*sinx-∫e^x*cosxdx

=e^x*sinx-∫cosxd(e^x)

=e^x*sinx-e^x*cosx+∫e^xd(cosx)

=e^x*sinx-e^x*cosx-∫e^x*sinxdx

那么可得,2∫e^x*sinxdx=e^x*sinx-e^x*cosx

所以∫e^x*sinxdx=e^x*(sinx-cosx)/2+C

扩展资料:

1、分部积分法的形式

(1)通过对u(x)求微分后,du=u'dx中的u'比u更加简洁。

例:∫x^2*e^xdx=∫x^2de^x=x^2*e^x-∫e^xdx^2=x^2*e^x-∫2x*e^xdx

(2)通过对u(x)求微分后使其类型与v(x)的类型相同或相近。

例:∫xarctanxdx=∫arctanxd(1/2x^2)

=1/2x^2*arctanx-1/2∫x^2darctanx=1/2x^2*arctanx-1/2∫x^2/(1+x^2)dx

(3)利用有些函数经一次或二次求微分后不变的性质来进行分部积分。

例:∫e^x*sinxdx=∫sinxde^x=e^x*sinx-∫e^xdsinx=e^x*sinx-∫e^x*cosxdx

=e^x*sinx-∫cosxde^x=e^x*sinx-e^x*cosx+∫e^xdcosx

=e^x*sinx-e^x*cosx-∫e^x*sinxdx

则2∫e^x*sinxdx=e^x*sinx-e^x*cosx,可得

∫e^x*sinxdx=1/2e^x*(sinx-cosx)+C

2、不定积分公式

∫mdx=mx+C、∫cosxdx=sinx+C、∫sinxdx=-cosx+C、∫e^xdx=e^x+C

参考资料来源:百度百科-不定积分

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式