怎样求正态分布的平均值与方差
/ n)
其中,x̄ 表示样本均值,xi 表示第 i 个样本数据,n 表示样本数量。
样本方差(sample variance)是指样本数据的离散程度的度量,用来衡量样本数据的分散程度。样本方差的公式为:
s^2 = ∑((xi-x̄)^2) / (n-1)
其中,s^2 表示样本方差,xi 表示第 i 个样本数据,x̄ 表示样本均值,n 表示样本数量。
样本均值和样本方差可以用来估计正态分布的平均值和方差,但是样本数量较小时,样本均值和样本方差的精确性会有所下降。因此,如果要求出精确的正态分布平均值和方差,应该使用正态分布的概率密度函数来求解。
2024-10-13 广告
设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]
其实就是均值是u,方差是t^2。
于是:∫e^[-(x-u)^2/2(t^2)]dx=(√2π)t(*)
积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域。
(1)求均值
对(*)式两边对u求导:
∫{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0
约去常数,再两边同乘以1/(√2π)t得:
∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0
把(u-x)拆开,再移项:
∫x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx
也就是
∫x*f(x)dx=u*1=u
这样就正好凑出了均值的定义式,证明了均值就是u。
(2)方差
过程和求均值是差不多的,我就稍微略写一点了。
对(*)式两边对t求导:
∫[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π
移项:
∫[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2
也就是
∫(x-u)^2*f(x)dx=t^2
正好凑出了方差的定义式,从而结论得证。
扩展资料:
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。
由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。
为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。
对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx
方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大)
若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。
因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
参考资料来源:百度百科--方差
参考资料来源:百度百科--正态分布