证明f(m+x)=f(m-x),则y=f(x)图像关于x=m对称

 我来答
科创17
2022-09-02 · TA获得超过5893个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:173万
展开全部
证明:令t=m+x,则x=t-m.所以由f(m+x)=f(m-x),可得f(t)=f[m-(t-m)]=f(2m-t),即f(t)=f(2m-t).又设y=f(x)图像上任意一点(a,b),则它关于x=m的对称点为(2m-a,b),且f(a)=b.令a=t,则由f(t)=f(2m-t)有f(a)=f(2m-a),所以f(2m-a...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式