若f(x) 连续,∫[0,1]xf(t)dt=f(x)+xe^x,求f(x)

 我来答
世纪网络17
2022-11-18 · TA获得超过5944个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:141万
展开全部
∫(0->1)xf(t)dt=f(x)+xe^x
f(x) =-xe^x + ∫(0->1)xf(t)dt (1)
∫(0->1) f(x) dx = ∫(0->1) [-xe^x + ∫(0->1)xf(t)dt ] dx
=∫(0->1) (-xe^x) dx + [x^2/2](0->1) . ∫(0->1)f(t)dt
=∫(0->1) -x d(e^x) + (1/2)∫(0->1)f(t)dt
(1/2)∫(0->1) f(x) dx =[-xe^x](0->1) +∫(0->1) e^x dx
= -e + (e-1)
= -1
∫(0->1) f(x) dx = -2
from (1)
f(x) =-xe^x + ∫(0->1)xf(t)dt
=-xe^x -2x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式