
如图三角形ABC中,角ABC=四十五度,CD垂直AB于D,BE平分角ABC,且BE垂直AC于E,与CD相交于点F,H是BC边中点,
2个回答
展开全部
(3)CE²+EG²=BG²;且BG=√2CE=√2GE.
证明:∠ABC=45°,CD垂直AB于D,则:CD=AD.
H为BC中点,则DH垂直BC(等腰三角形"三线合一")
连接CG,则BG=CG,∠GCB=∠GBC=22.5°,∠EGC=45°.
又BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.
∴CE²+GE²=CG²=BG²;
即2CE²=BG²,BG=√2CE=√2GE.
证明:∠ABC=45°,CD垂直AB于D,则:CD=AD.
H为BC中点,则DH垂直BC(等腰三角形"三线合一")
连接CG,则BG=CG,∠GCB=∠GBC=22.5°,∠EGC=45°.
又BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.
∴CE²+GE²=CG²=BG²;
即2CE²=BG²,BG=√2CE=√2GE.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询