求极限 limx→o (e∧x +x)∧(1/x)
1个回答
展开全部
lim(x→o) (e∧x +x)∧(1/x)=lim(x→o)e^[(1/x)ln(e∧x +x)]
=e^[lim(x→o)(1/x)ln(e∧x +x)]
而
lim(x→o)(1/x)ln(e∧x +x)=lim(x→o)(1/x)ln(1+e∧x +x-1)
=lim(x→o)(e∧x +x-1)/x (无穷小等价替换)
=lim(x→o)(e∧x +1)/1 (罗比达法则)
=2.
于是lim(x→o) (e∧x +x)∧(1/x)=e^2.
=e^[lim(x→o)(1/x)ln(e∧x +x)]
而
lim(x→o)(1/x)ln(e∧x +x)=lim(x→o)(1/x)ln(1+e∧x +x-1)
=lim(x→o)(e∧x +x-1)/x (无穷小等价替换)
=lim(x→o)(e∧x +1)/1 (罗比达法则)
=2.
于是lim(x→o) (e∧x +x)∧(1/x)=e^2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询