sin(兀/6十a)=12/13,a属于(兀/6,2兀/3)求cosa
1个回答
展开全部
α∈(π/6,2π/3),即π/3-α∈(-π/3,π/6).
∴sin(π/6+α)=12/13
→cos[π/2-(π/6+α)]=12/13
→cos(π/3-α)=12/13
→sin(π/3-α)=√[1-(12/13)^2]=5/13.
∴cosα=cos[π/3-(π/3-α)]
=cos(π/3)cos(π/3-α)+sin(π/3)sin(π/3-α)
=(1/2)×(12/13)+(√3/2)×(5/13)
=(12+5√3)/26.
∴sin(π/6+α)=12/13
→cos[π/2-(π/6+α)]=12/13
→cos(π/3-α)=12/13
→sin(π/3-α)=√[1-(12/13)^2]=5/13.
∴cosα=cos[π/3-(π/3-α)]
=cos(π/3)cos(π/3-α)+sin(π/3)sin(π/3-α)
=(1/2)×(12/13)+(√3/2)×(5/13)
=(12+5√3)/26.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询