函数y=arcsinx-arccosx,x∈[-1/2,√3/2]的值域是

 我来答
新科技17
2022-09-03 · TA获得超过5904个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:75万
展开全部
函数y=arcsinx-arccosx,x∈[-1/2,√3/2]的值域是
设arcsinx=α,则arccosx=π/2-arcsinx=π/2-α;
故y=arcsinx-arccosx=α-(π/2-α)=2α-π/2;
由于-1/2≦x≦√3/2,故-π/6≦α≦π/3;-π/3≦2α≦2π/3;
于是得-π/3-π/2≦2α-π/2≦2π/3-π/2;即-5π/6≦2α-π/2≦π/6;
也就是-5π/6≦y≦π/6,这就是y的值域.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式