证明不等式x/(1+x)<ln(1+x)<x.(x>0)
4个回答
展开全部
一楼给的是用函数单调性的证明方法。二楼用的是拉格朗日中值定理。楼主估计是要拉格朗日的吧。用单调性应该都会做。。。
我把二楼的写详细点。
设f(x)=ln(1+x) (x>0)
取区间【1,1+x】,显然f(x)在【1,1+x】上连续,在(1,1+x)上可导。中间点可选θx,(0<θ<1).
由拉格朗日中值定理得:
f(1+x)-f(1)=f '(θx)(1+x-1)
即:ln(1+x)=x/(1+θx)
又:x/(1+x)<x/(1+θx)<x
即得证:x/(1+x)<ln(1+x)<x
我把二楼的写详细点。
设f(x)=ln(1+x) (x>0)
取区间【1,1+x】,显然f(x)在【1,1+x】上连续,在(1,1+x)上可导。中间点可选θx,(0<θ<1).
由拉格朗日中值定理得:
f(1+x)-f(1)=f '(θx)(1+x-1)
即:ln(1+x)=x/(1+θx)
又:x/(1+x)<x/(1+θx)<x
即得证:x/(1+x)<ln(1+x)<x
参考资料: 高等数学。。。
展开全部
f(x)=ln(1+x)-x
则 f '(x) = 1/(1+x) - 1 < 0 (∵x>0)
所以 f(x)在(0,+∞)上是减函数,于是 f(x) < f(0) = 0 即 ln(1+x) < x
g(x) = x/(1+x) - ln(1+x)
则 g ' (x) = 1/(1+x)^2 - 1/(1+x) = - x /(1+x)^2 < 0
所以 g(x)在(0,+∞)上是减函数,于是 g(x) < g(0) = 0 即 x/(1+x) < ln(1+x)
综上所述,结论成立
则 f '(x) = 1/(1+x) - 1 < 0 (∵x>0)
所以 f(x)在(0,+∞)上是减函数,于是 f(x) < f(0) = 0 即 ln(1+x) < x
g(x) = x/(1+x) - ln(1+x)
则 g ' (x) = 1/(1+x)^2 - 1/(1+x) = - x /(1+x)^2 < 0
所以 g(x)在(0,+∞)上是减函数,于是 g(x) < g(0) = 0 即 x/(1+x) < ln(1+x)
综上所述,结论成立
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
和上面的答案差不多。
令f(x)=x/(1+x)-ln(1+x) (x>0)
则f'(x)=-x/(1+x^2)<0 ,所以f(x)在x>0时是减函数,所以f(x)<f(0)=0,即f(x)<0,所以x/(1+x)-ln(1+x)<0
即x/(1+x)<ln(1+x)
同理令g(x)=ln(1+x)-x (x>0)
则g'(x)=1/(1+x)-1=-x/(1+x)<0,所以g(x)在x>0时是减函数,所以g(x)<g(0)=0,即g(x)<0,所以ln(1+x)-x<0
即ln(1+x)<x
综上所述原不等式成立 ,即x/(1+x)<ln(1+x)<x
令f(x)=x/(1+x)-ln(1+x) (x>0)
则f'(x)=-x/(1+x^2)<0 ,所以f(x)在x>0时是减函数,所以f(x)<f(0)=0,即f(x)<0,所以x/(1+x)-ln(1+x)<0
即x/(1+x)<ln(1+x)
同理令g(x)=ln(1+x)-x (x>0)
则g'(x)=1/(1+x)-1=-x/(1+x)<0,所以g(x)在x>0时是减函数,所以g(x)<g(0)=0,即g(x)<0,所以ln(1+x)-x<0
即ln(1+x)<x
综上所述原不等式成立 ,即x/(1+x)<ln(1+x)<x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:设f(t)=ln(1+t),
ln(1+x)=ln(1+x)-ln1=f'(θx)*x=x/(1+θx) ,(0<θ<1) ...拉格朗日中值定理
而x/(1+x)<x/(1+θx)<x(x>0)
∴不等式成立。
ln(1+x)=ln(1+x)-ln1=f'(θx)*x=x/(1+θx) ,(0<θ<1) ...拉格朗日中值定理
而x/(1+x)<x/(1+θx)<x(x>0)
∴不等式成立。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询