帮帮我解答这道圆锥曲线题吧
已知a大于0,过M(a,0)任作一条直线交抛物线y=2px(p大于0)于P,Q两点,若1/MP²+1/MQ²为定值,则a=A.pB.2pC.根号2乘以...
已知a大于0,过M(a,0)任作一条直线交抛物线y=2px(p大于0)于P,Q两点,若1/MP²+1/MQ²为定值,则a= A.p B.2pC.根号2乘以p D.p/2
展开
展开全部
设直线PQ的t参数方程为x=a+tcosα,y=tsinα,(α为直线PQ的倾斜角,t为直线上的点到点M的距离。 这么设是为了减少后面的运算量, 这是解决这类问题最简单的方法,最好能掌握)P,Q的坐标分别为:(a+t1cosα,t1sinα),(a+t2cosα,t2sinα),MP^2=t1^2*(cosa)^2+t1^2*(sina)^2=t1^2,MQ^2=t2^2*(cosa)^2+t2^2*(sina)^2=t2^2。又P,Q在抛物线:y^2=2px,将x=a+tcosα,y=tsinα代入y^2=2px,得:(tsina)^2=2p*(a+tcosa),(sina)^2*t^2-2pcosa*t-2pa=0,所以t1+t2=2pcosa/(sina)^2, t1t2=-2pa/(sina)^2,t1^2+t2^2=(t1+t2)^2-2t1t2=4[p^2*(cosa)^2+pa*(sina)^2]/(sina)^4,又 1/MP^2+1/MQ^2=1/t1^2+1/t2^2=(t1^2+t2^2)/(t1t2)^2 =[p^2*(cosa)^2+pa*(sina)^2]/(pa)^2=[p*(cosa)^2+a*(sina)^2]/p*a^2, 为定值,所以 p=a。
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询