圆锥曲线的离心率怎么定义?

 我来答
fifaWCP2018

2022-11-10 · TA获得超过1.1万个赞
知道大有可为答主
回答量:3.3万
采纳率:99%
帮助的人:614万
展开全部
曲线上某点的曲率半径是该点的密切圆的半径,在limΔs→0ΔαΔs=dαdslimΔs→0⁡ΔαΔs=dαds存在的条件下,k=∣∣dαds∣∣k=|dαds|。
设曲线的方程为y=f(x),且f(x)具有二阶导数。因为tanα = y’(设-ππ/2<α<ππ/2),所以
a=arctany’

dαdx=(arctany′)′dαdx=(arctany′)′
dα=(arctany′)′dx=y′′1+y′2dx
dα=(arctan⁡y′)′dx=y″1+y′2dx
或者

sec2αdα=y''dx,

dα=y′′sec2αdx=y′′1+tan2αdx=y′′1+y′2dxdα=y″sec2αdx=y″1+tan2αdx=y″1+y′2dx
3. 因为 ds=1+y′2−−−−−−√dxds=1+y′2dx(密切圆面积求导),从而得到曲率公式k=f′′[1+(f′)2]32k=f″[1+(f′)2]32。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式