1个回答
展开全部
分析:1/1x3x5=1/4×(1/1*3 -1/3*5)
1/3x5x7=1/4×(1/3*5 -1/5*7)
1/5x7x9=1/4×(1/5*7 - 1/7*9)
1/7*9*11=1/4×(1/7*9 -1/9*11)
.....................
1/2003x2005x2007=1/4×(1/2003*2005 -1/2005*207)
所有的等式相加有
1/1x3x5+1/3x5x7+1/5x7x9+.....+1/2003x2005x2007
=1/4×(1/1*3 -1/3*5 +1/3*5 -1/5*7+....+1/2003*2005-1/2005*2007)
=1/4×(1/1*3 - 1/2005*2007)
=335336/4024035
结论:1/n(n+1)(n+2)=1/2×[1/n(n+1) - 1/(n+1)(n+2)]
1/n(n+2)(n+4)=1/4×[1/n(n+2) - 1/(n+2)(n+4)]
1/3x5x7=1/4×(1/3*5 -1/5*7)
1/5x7x9=1/4×(1/5*7 - 1/7*9)
1/7*9*11=1/4×(1/7*9 -1/9*11)
.....................
1/2003x2005x2007=1/4×(1/2003*2005 -1/2005*207)
所有的等式相加有
1/1x3x5+1/3x5x7+1/5x7x9+.....+1/2003x2005x2007
=1/4×(1/1*3 -1/3*5 +1/3*5 -1/5*7+....+1/2003*2005-1/2005*2007)
=1/4×(1/1*3 - 1/2005*2007)
=335336/4024035
结论:1/n(n+1)(n+2)=1/2×[1/n(n+1) - 1/(n+1)(n+2)]
1/n(n+2)(n+4)=1/4×[1/n(n+2) - 1/(n+2)(n+4)]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询