a、b、c是不全相等的正数,求证:a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc 我来答 1个回答 #热议# 生活中有哪些实用的心理学知识? faker1718 2022-08-28 · TA获得超过971个赞 知道小有建树答主 回答量:272 采纳率:100% 帮助的人:50.7万 我也去答题访问个人页 关注 展开全部 a(b^2+c^2)≥a*2bc=2abc,b(c^2+a^2)≥b*2ac=2abc,c(a^2+b^2)≥c*2ab=2abc,则三式相加得 a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)≥6abc 又a、b、c是不全相等的正数,故等号不能取到. 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: