已知F1,F2为椭圆x^2+y^2/2=1的两个焦点,AB是过焦点F1的一条动弦,求三角形ABF2的面积的最大值
1个回答
展开全部
椭圆a=√2, b=1,c=1
设A点坐标(Xa,Ya), B点坐标(Xb,Yb)
三角形ABF2面积 = c* |Xa-Xb| = |Xa-Xb|
(Xa,Ya),(Xb,Yb)设方程组
y = kx -1 (1)
x^2+y^2/2=1 (2)
的解
(1)代入(2),化简
(2+k^2)x^2-2kx-1 = 0
|Xa-Xb| = √(8k^2+8)/(2+k^2)
当k = 0时,
|Xa-Xb| = √2 为极大值
三角形ABF2面积 = |Xa-Xb|
极大值为√2
设A点坐标(Xa,Ya), B点坐标(Xb,Yb)
三角形ABF2面积 = c* |Xa-Xb| = |Xa-Xb|
(Xa,Ya),(Xb,Yb)设方程组
y = kx -1 (1)
x^2+y^2/2=1 (2)
的解
(1)代入(2),化简
(2+k^2)x^2-2kx-1 = 0
|Xa-Xb| = √(8k^2+8)/(2+k^2)
当k = 0时,
|Xa-Xb| = √2 为极大值
三角形ABF2面积 = |Xa-Xb|
极大值为√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询