求∫e∧x sinx∧2 dx的解题过程,?
1个回答
展开全部
∫ e^x * sin²x dx
= ∫ e^x * (1 - cos2x)/2 dx
= (1/2)e^x - (1/2)N
N = ∫ e^xcos2x dx = (1/2)∫ e^x d(sin2x)
= (1/2)e^xsin2x - (1/2)∫ e^xsin2x dx
= (1/2)e^xsin2x + (1/4)∫ e^x d(cos2x)
= (1/2)e^xsin2x + (1/4)e^xcos2x - (1/4)N
(5/4)N = (1/4)(2sin2x + cos2x)e^x
N = (1/5)(2sin2x + cos2x)e^x + C
原式 = (1/2)e^x - (1/5)e^xsin2x - (1/10)e^xcos2x + C,2,
= ∫ e^x * (1 - cos2x)/2 dx
= (1/2)e^x - (1/2)N
N = ∫ e^xcos2x dx = (1/2)∫ e^x d(sin2x)
= (1/2)e^xsin2x - (1/2)∫ e^xsin2x dx
= (1/2)e^xsin2x + (1/4)∫ e^x d(cos2x)
= (1/2)e^xsin2x + (1/4)e^xcos2x - (1/4)N
(5/4)N = (1/4)(2sin2x + cos2x)e^x
N = (1/5)(2sin2x + cos2x)e^x + C
原式 = (1/2)e^x - (1/5)e^xsin2x - (1/10)e^xcos2x + C,2,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询