一道微积分求极限的题目
lim(x→0)[(xcotx-1)/(x^2)]我的解法是(以下lim符号省略):原式=[(x/sinx)cosx-1]/(x^2)=[(1)cosx-1]/(x^2)...
lim(x→0)[(xcotx-1)/(x^2)]
我的解法是(以下lim符号省略):
原式=[(x/sinx)cosx-1]/(x^2)=[(1)cosx-1]/(x^2)
为0/0形式,使用洛必达法则,得:
(-sinx)/(2x)=-1/2
但是却错了,答案是-1/3,请问上面步骤错在哪里? 展开
我的解法是(以下lim符号省略):
原式=[(x/sinx)cosx-1]/(x^2)=[(1)cosx-1]/(x^2)
为0/0形式,使用洛必达法则,得:
(-sinx)/(2x)=-1/2
但是却错了,答案是-1/3,请问上面步骤错在哪里? 展开
2个回答
展开全部
(xcotx)'=cot-x/(sinx)^2=(cosxsinx-x)/(sinx)^2=[1/2*sin(2x)-x]/(sinx)^2;
所以使用罗必达法则后为
[1/2*sin(2x)-x]/(2x(sinx)^2)
把sinx换成等价量x
=[1/2*sin(2x)-x]/(2x^3)
再次使用罗必达=(cos(2x)-1)/(6x^2)
再次使用罗必达=2sin(2x)/6(2x)=-1/3
以上省略了求极限符号。
所以使用罗必达法则后为
[1/2*sin(2x)-x]/(2x(sinx)^2)
把sinx换成等价量x
=[1/2*sin(2x)-x]/(2x^3)
再次使用罗必达=(cos(2x)-1)/(6x^2)
再次使用罗必达=2sin(2x)/6(2x)=-1/3
以上省略了求极限符号。
追问
同上。我知道正确解法。只是想知道我的解法错在哪里
追答
xcotx的导数我写出来了。
你的(-sinx)/(2x)
分子的导数不是-sinx啊
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |