如图三角形ABC中,CA=CB,以BC为直径的圆O交AB与D,圆O的切线DE交AC于E

(1)求证:DE⊥AC(2)若∠A=60°,AB=16,EF⊥BC于F,求EF的长... (1)求证:DE⊥AC
(2)若∠A=60°,AB=16,EF⊥BC于F,求EF的长
展开
hebchina
2011-11-03 · TA获得超过10.5万个赞
知道大有可为答主
回答量:1.8万
采纳率:63%
帮助的人:8785万
展开全部
(1)求证:DE⊥AC
BC为直径,∠CDB=90°;∠CDA=∠CDB=90°;
CA=CB,∠A=∠B,所以∠ACD=∠BCD,
∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]
∠CDE+∠ACD=∠B+∠BCD=90°;
所以∠CED=90°,因此DE⊥AC

(2)若∠A=60°,AB=16,EF⊥BC于F,求EF的长
∠A=60°=∠B,∠ACB=(180-2*60)=60°;
三角形ABC为等边三角形,AB=BC=CA=16;
∠BCD=30°=∠ADE=∠ACD;
EF⊥BC于F,∠CEF=30°,
AD=AC/2=16/2=8,[30°所对直角边=斜边的一半]
AE=AD/2=8/2=4;
CE=AC-AE=16-4=12,CF=CE/2=12/2=6,
EF²=CE²-CF²=12²-6²=144-36=108
EF=√108=6√3.
百度网友3d83fcf
2011-11-03 · TA获得超过2097个赞
知道小有建树答主
回答量:271
采纳率:0%
帮助的人:118万
展开全部
(1)∵BC为直径,D在圆上
∴CD⊥AB
∴∠A+∠ACD=90°
∵DE为切线,D在圆上
∴D为切点,∠CDE=∠B
∵CA=CB
∴∠B=∠A
∴∠A=∠CDE
∴∠CDE+∠ACD=90°
∴∠CDE=180°-(∠CDE+∠ACD)=90°
∴DE⊥AC
(2)∵∠A=60° CA=CB
∴三角形ABC为等边三角形
∠ECF=60°
在等边三角形ABC中CD⊥AB,AB=16
∴AD=0.5·AB=8,AC=16
在直角三角形ADE中AE=AD·cos60°=4
∴CE=AC-AE=12
在直角三角形CEF中EF=CE·sin60°=6√3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式