如何证明:函数单调有界,则必有极限?
2个回答
展开全部
因为函数有界,所以函数的值域有界
所以函数值域必定有“最小上界” (supreme), S
因为是单调函数,所以对应任意小的e>0, 必定存在N>0使得对于任意x>N, 都有 | f(x) - S | < e
满足极限的定义.
所以函数值域必定有“最小上界” (supreme), S
因为是单调函数,所以对应任意小的e>0, 必定存在N>0使得对于任意x>N, 都有 | f(x) - S | < e
满足极限的定义.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |